Ideal topologies on 2^{κ}

Philipp Schlicht, University of Bristol

6 August 2019

 \blacktriangleright We study a new approach to topologies on 2^κ generalizing the bounded topology

 \blacktriangleright We study a new approach to topologies on 2^κ generalizing the bounded topology

◆□ → ◆□ → ◆目 → ◆目 → ○ ● ● ● ●

▶ These topologies are generated by ideals

 \blacktriangleright We study a new approach to topologies on 2^κ generalizing the bounded topology

・ロト ・日 ・ モ ・ モ ・ 日 ・ つへぐ

- ▶ These topologies are generated by ideals
- The setting is connected with cardinal characteristics for 2^{κ}

- \blacktriangleright We study a new approach to topologies on 2^κ generalizing the bounded topology
- ▶ These topologies are generated by ideals
- \blacktriangleright The setting is connected with cardinal characteristics for 2^κ
- > This is joint work with Peter Holy, Marlene Koelbing and Wolfgang Wohofsky

・ロト ・日 ・ モ ・ モ ・ 日 ・ つへぐ

Ideal topologies

Definition

The bounded topology on 2^κ has the basic clopen sets

$$N_t = \{ x \in 2^\kappa \mid t \subseteq x \},\$$

where $t \in 2^{<\kappa}$.

Ideal topologies

Definition

The bounded topology on 2^κ has the basic clopen sets

$$N_t = \{ x \in 2^\kappa \mid t \subseteq x \},\$$

where $t \in 2^{<\kappa}$.

Let κ be a regular and uncountable cardinal. Let NS_{κ} denote the non-stationary ideal on κ . In a nutshell, the *I*-topology is obtained from the bounded topology by working with a $<\kappa$ -closed ideal containing NS_{κ}.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Ideal topologies

Definition

The bounded topology on 2^{κ} has the basic clopen sets

$$N_t = \{ x \in 2^\kappa \mid t \subseteq x \},\$$

where $t \in 2^{<\kappa}$.

Let κ be a regular and uncountable cardinal. Let NS_{κ} denote the non-stationary ideal on κ . In a nutshell, the *I*-topology is obtained from the bounded topology by working with a $<\kappa$ -closed ideal containing NS_{κ}.

Definition

Let $\operatorname{\mathsf{Fun}}_I = \{f : A \to 2 \mid A \in I\}$. The *I*-topology on 2^{κ} has the basic clopen sets

$$[f] = \{g \in 2^{\kappa} \mid f \subseteq g\},\$$

where $f \in \mathsf{Fun}_I$.

Some, but not all of our results also apply to the generalized Baire space κ^κ rather than $2^\kappa.$

Fact

• The I-topology refines the bounded topology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fact

- ▶ The I-topology refines the bounded topology.
- The basis of the I-topology has size 2^{κ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Fact

- ▶ The I-topology refines the bounded topology.
- The basis of the I-topology has size 2^{κ} .
- There are $2^{2^{\kappa}}$ many *I*-open sets.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Fact

- ▶ The I-topology refines the bounded topology.
- The basis of the I-topology has size 2^{κ} .
- There are $2^{2^{\kappa}}$ many *I*-open sets.

Proposition (Baire category theorem for ideal topologies)

The intersection of κ many I-open dense sets is I-dense.

Fact

- ▶ The I-topology refines the bounded topology.
- The basis of the I-topology has size 2^{κ} .
- There are $2^{2^{\kappa}}$ many *I*-open sets.

Proposition (Baire category theorem for ideal topologies)

The intersection of κ many I-open dense sets is I-dense.

On the other hand, the *I*-topology cannot be characterized by converging sequences.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

An ideal on κ is called *tall* if every unbounded subset of κ contains an unbounded subset in *I*. For instance, any ideal $I \supseteq NS_{\kappa}$ is tall.

Fact

- ▶ The I-topology refines the bounded topology.
- The basis of the I-topology has size 2^{κ} .
- There are $2^{2^{\kappa}}$ many *I*-open sets.

Proposition (Baire category theorem for ideal topologies)

The intersection of κ many I-open dense sets is I-dense.

On the other hand, the *I*-topology cannot be characterized by converging sequences.

An ideal on κ is called *tall* if every unbounded subset of κ contains an unbounded subset in *I*. For instance, any ideal $I \supseteq NS_{\kappa}$ is tall.

Proposition

Assume that I is tall. Then every I-convergent sequence (of any length) is eventually constant.

How does the hierarchy of *I*-Borel sets look like?

A normal form for closed sets

I want to provide some arguments showing that the I-topology leads to an interesting structure theory of I-Borel sets.

A normal form for closed sets

I want to provide some arguments showing that the I-topology leads to an interesting structure theory of I-Borel sets.

For $x \in 2^{\kappa}$, let $x || A = \{x \upharpoonright A | A \in I\}$ be the ideal on Fun_I generated by x.

Proposition

If $T \subseteq \operatorname{Fun}_I$, then

$$[T] = \{ x \in 2^{\kappa} \mid x \| I \subseteq \mathsf{Fun}_I \}$$

is an I-closed subset of 2^{κ} . Conversely, every I-closed subset of 2^{κ} is of the form [T] for some $T \subseteq \operatorname{Fun}_I$ that is closed under restrictions.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

A normal form for closed sets

I want to provide some arguments showing that the *I*-topology leads to an interesting structure theory of *I*-Borel sets.

For $x \in 2^{\kappa}$, let $x || A = \{x \mid A \mid A \in I\}$ be the ideal on Fun_I generated by x.

Proposition

If $T \subseteq \operatorname{Fun}_I$, then

$$[T] = \{ x \in 2^{\kappa} \mid x \| I \subseteq \mathsf{Fun}_I \}$$

is an I-closed subset of 2^{κ} . Conversely, every I-closed subset of 2^{κ} is of the form [T] for some $T \subseteq \operatorname{Fun}_I$ that is closed under restrictions.

Proof.

If $X \subseteq 2^{\kappa}$ is *I*-closed, let

$$T = \{ x \| A \mid x \in X \land A \in \mathrm{NS}_{\kappa} \}.$$

If $x \in X$, then clearly $x || I \subseteq T$. Now take $x \notin X$. Since X is *I*-closed, there is $A \in I$ with $X \cap [x \upharpoonright A] = \emptyset$. But then $x \upharpoonright A \notin T$, hence also $x || I \subseteq T$.

The first statement of the proposition is verified similarly.

Let $U = \{x \in 2^{\kappa} \mid x \subseteq \kappa \text{ is unbounded}\}$. Note that U is I-open.

Let $U = \{x \in 2^{\kappa} \mid x \subseteq \kappa \text{ is unbounded}\}$. Note that U is I-open.

Proposition

U is not I- F_{σ} , i.e. no κ -union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. $U = \bigcup_{\alpha < \kappa} [T_{\alpha}]$, with each $T_{\alpha} \subseteq \mathsf{Fun}_{I}$. We inductively construct an unbounded subset of κ which is not in U. We say that $f \in \mathsf{Fun}_{I}$ is bounded in κ if $\{\gamma < \kappa \mid f(\gamma) = 1\}$ is.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Let $U = \{x \in 2^{\kappa} \mid x \subseteq \kappa \text{ is unbounded}\}$. Note that U is I-open.

Proposition

U is not I- F_{σ} , i.e. no κ -union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. $U = \bigcup_{\alpha < \kappa} [T_{\alpha}]$, with each $T_{\alpha} \subseteq \mathsf{Fun}_{I}$. We inductively construct an unbounded subset of κ which is not in U. We say that $f \in \mathsf{Fun}_{I}$ is *bounded* in κ if $\{\gamma < \kappa \mid f(\gamma) = 1\}$ is.

Starting with $f_0 = \emptyset$, we construct a continuous and increasing κ -sequence of bounded f_{α} 's so that $f_{\alpha+1}(\gamma) = 1$ for some $\gamma \ge \alpha$, and so that $f_{\alpha+1} \notin T_{\alpha}$ for all $\alpha < \kappa$: If some T_{α} contained all bounded extensions of f_{α} , then $[T_{\alpha}]$ would have to contain a bounded set. In the end, $f = \bigcup_{\alpha < \kappa} f_{\alpha}$ is an unbounded subset of κ which is not in U, yielding our desired contradiction.

Let $U = \{x \in 2^{\kappa} \mid x \subseteq \kappa \text{ is unbounded}\}$. Note that U is I-open.

Proposition

U is not I- F_{σ} , i.e. no κ -union of I-closed sets.

Proof.

Assume for a contradiction that it is, i.e. $U = \bigcup_{\alpha < \kappa} [T_{\alpha}]$, with each $T_{\alpha} \subseteq \mathsf{Fun}_{I}$. We inductively construct an unbounded subset of κ which is not in U. We say that $f \in \mathsf{Fun}_{I}$ is *bounded* in κ if $\{\gamma < \kappa \mid f(\gamma) = 1\}$ is.

Starting with $f_0 = \emptyset$, we construct a continuous and increasing κ -sequence of bounded f_{α} 's so that $f_{\alpha+1}(\gamma) = 1$ for some $\gamma \ge \alpha$, and so that $f_{\alpha+1} \notin T_{\alpha}$ for all $\alpha < \kappa$: If some T_{α} contained all bounded extensions of f_{α} , then $[T_{\alpha}]$ would have to contain a bounded set. In the end, $f = \bigcup_{\alpha < \kappa} f_{\alpha}$ is an unbounded subset of κ which is not in U, yielding our desired contradiction.

One can show similarly that the set of clubs in κ is not I- F_{σ} , for $I = NS_{\kappa}$.

The club filter is not *I*-Borel

Let $I = NS_{\kappa}$. Note first that the club filter is both *I*-dense and co-dense. Similar to the Baire category theorem, one can show that every κ -intersection of *I*-open dense sets contains both an element of the club filter, and of the nonstationary ideal.

・ロト ・日 ・ モ ・ モ ・ 日 ・ つへぐ

The club filter is not I-Borel

Let $I = NS_{\kappa}$. Note first that the club filter is both *I*-dense and co-dense. Similar to the Baire category theorem, one can show that every κ -intersection of *I*-open dense sets contains both an element of the club filter, and of the nonstationary ideal.

By a similar argument as for the bounded topology, the club filter cannot have the I-Baire property.

・ロト ・日 ・ モ ・ モ ・ 日 ・ つへぐ

The club filter is not I-Borel

Let $I = NS_{\kappa}$. Note first that the club filter is both *I*-dense and co-dense. Similar to the Baire category theorem, one can show that every κ -intersection of *I*-open dense sets contains both an element of the club filter, and of the nonstationary ideal.

By a similar argument as for the bounded topology, the club filter cannot have the I-Baire property.

Lemma

For $I = NS_{\kappa}$, the club filter doesn't have the I-Baire property. In particular, it's not I-Borel.

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ ・ つ へ ()

What's the relation between *I*-meager and meager?

I-meager sets

From now on, let $I = NS_{\kappa}$. Recall:

Definition

- A subset A of 2^{κ} is *I*-nowhere dense if for each $f \in \mathsf{Fun}_I$, there's some $g \in \mathsf{Fun}_I$ with $f \subseteq g$ and $[g] \cap A = \emptyset$.
- A is *I*-meager if it is a κ -union of *I*-nowhere dense sets.
- A has the *I-Baire property* if it is of the form $U \triangle M$, where U is *I*-open and M is *I*-meager.

We call the sets [f] *I-cones.* By the Baire category theorem, these are not *I*-meager.

I-meager sets

From now on, let $I = NS_{\kappa}$. Recall:

Definition

- ▶ A subset A of 2^{κ} is *I*-nowhere dense if for each $f \in \mathsf{Fun}_I$, there's some $g \in \mathsf{Fun}_I$ with $f \subseteq g$ and $[g] \cap A = \emptyset$.
- A is *I*-meager if it is a κ -union of *I*-nowhere dense sets.
- A has the *I-Baire property* if it is of the form $U \triangle M$, where U is *I*-open and M is *I*-meager.

We call the sets [f] *I-cones.* By the Baire category theorem, these are not *I*-meager.

Basic properties of *I*-nowhere dense sets:

• every set of size $< 2^{\kappa}$ is *I*-nowhere dense

I-meager sets

From now on, let $I = NS_{\kappa}$. Recall:

Definition

- A subset A of 2^{κ} is *I-nowhere dense* if for each $f \in \mathsf{Fun}_I$, there's some $g \in \mathsf{Fun}_I$ with $f \subseteq g$ and $[g] \cap A = \emptyset$.
- A is *I*-meager if it is a κ -union of *I*-nowhere dense sets.
- A has the *I-Baire property* if it is of the form $U \triangle M$, where U is *I*-open and M is *I*-meager.

We call the sets [f] *I-cones.* By the Baire category theorem, these are not *I*-meager.

Basic properties of *I*-nowhere dense sets:

- every set of size $< 2^{\kappa}$ is *I*-nowhere dense
- there is an *I*-nowhere dense set of size 2^{κ} :

 $\{x \in 2^{\kappa} \mid x(\alpha) = x(\alpha + 1) \text{ for each even } \alpha < \kappa\}.$

If $f \in \operatorname{\mathsf{Fun}}_I$ and $|\operatorname{\mathsf{dom}}(f)| = \kappa$, then [f] is closed nowhere dense. Hence:

Proposition

There is a meager set which is not I-meager.

The converse direction is more subtle.

Lemma

Assume κ is inaccessible or \Diamond_{κ} holds.

The converse direction is more subtle.

Lemma

Assume κ is inaccessible or \Diamond_{κ} holds. Then every comeager set contains an *I*-cone [f]:

For
$$\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$$
 open dense $\exists f \in \mathsf{Fun}_{I} \quad [f] \subseteq \bigcap_{\alpha < \kappa} D_{\alpha}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The converse direction is more subtle.

Lemma

Assume κ is inaccessible or \Diamond_{κ} holds. Then every comeager set contains an *I*-cone [f]:

For
$$\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$$
 open dense $\exists f \in \mathsf{Fun}_{I} \quad [f] \subseteq \bigcap_{\alpha < \kappa} D_{\alpha}$.

The assumption holds for all successor cardinals $\kappa = \lambda^+$ with $\lambda > \omega$ and $2^{\lambda} = \lambda^+$ by a result of Shelah from 2007.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

Assume κ is inaccessible or \Diamond_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \mathsf{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Lemma

Assume κ is inaccessible or \Diamond_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \operatorname{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Theorem

Assume that $I \supseteq NS_{\kappa}$ and the conclusion of the lemma holds. If A has the Baire property, then "A is I-meager" implies "A is meager".

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Lemma

Assume κ is inaccessible or \Diamond_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \mathsf{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Theorem

Assume that $I \supseteq NS_{\kappa}$ and the conclusion of the lemma holds. If A has the Baire property, then "A is I-meager" implies "A is meager".

Proof (Theorem).

Assume that A has the Baire property and is not meager. We show that A is not I-meager.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Lemma

Assume κ is inaccessible or \diamondsuit_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \mathsf{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Theorem

Assume that $I \supseteq NS_{\kappa}$ and the conclusion of the lemma holds. If A has the Baire property, then "A is I-meager" implies "A is meager".

Proof (Theorem).

Assume that A has the Baire property and is not meager. We show that A is not I-meager.

Since A has the Baire property, there is an $s \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ such that $A \cap [s]$ is comeager in [s], i.e. there is $\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$ open dense, with $\bigcap_{\alpha < \kappa} D_{\alpha} \cap [s] \subseteq A$.

Lemma

Assume κ is inaccessible or \diamondsuit_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \mathsf{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Theorem

Assume that $I \supseteq NS_{\kappa}$ and the conclusion of the lemma holds. If A has the Baire property, then "A is I-meager" implies "A is meager".

Proof (Theorem).

Assume that A has the Baire property and is not meager. We show that A is not I-meager.

Since A has the Baire property, there is an $s \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ such that $A \cap [s]$ is comeager in [s], i.e. there is $\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$ open dense, with $\bigcap_{\alpha < \kappa} D_{\alpha} \cap [s] \subseteq A$. By our assumption, there exists $f \supseteq s$, $f \in \mathsf{Fun}_I$ with $[f] \subseteq \bigcap_{\alpha < \kappa} D_{\alpha} \cap [s] \subseteq A$. Thus A is not I-meager.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

Assume κ is inaccessible or \diamondsuit_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \operatorname{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Lemma

Assume κ is inaccessible or \diamondsuit_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \mathsf{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Proof sketch, part 1.

Fix a $\langle \kappa \text{-sequence } \vec{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$, that is, for every $A \subseteq \kappa$, there is a stationary set of α 's with $A_{\alpha} = A \cap \alpha$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Lemma

Assume κ is inaccessible or \diamondsuit_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \mathsf{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Proof sketch, part 1.

Fix a $\langle \kappa \text{-sequence } \vec{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$, that is, for every $A \subseteq \kappa$, there is a stationary set of α 's with $A_{\alpha} = A \cap \alpha$.

Assume that \vec{D} is decreasing. By induction on $i < \kappa$, we define

- ▶ a continuous ⊆-increasing sequence $\vec{f} = \langle f_i | i < \kappa \rangle$ of functions in $\operatorname{Fun}_{\mathrm{bd}_{\kappa}}$, such that $[f_{i+1}] \subseteq D_i$ for every $i < \kappa$, and
- a club subset $C = \{\alpha_j \mid j < \kappa\}$ of κ that is disjoint from dom (f_i) for each $i < \kappa$.

Lemma

Assume κ is inaccessible or \diamondsuit_{κ} holds. For any $\vec{D} = \langle D_i \mid i < \kappa \rangle$ open dense $\exists f \in \mathsf{Fun}_I \ [f] \subseteq \bigcap_{i < \kappa} D_i.$

Proof sketch, part 1.

Fix a $\langle \kappa \text{-sequence } \vec{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$, that is, for every $A \subseteq \kappa$, there is a stationary set of α 's with $A_{\alpha} = A \cap \alpha$.

Assume that \vec{D} is decreasing. By induction on $i < \kappa$, we define

- ▶ a continuous ⊆-increasing sequence $\vec{f} = \langle f_i | i < \kappa \rangle$ of functions in $\operatorname{Fun}_{\mathrm{bd}_{\kappa}}$, such that $[f_{i+1}] \subseteq D_i$ for every $i < \kappa$, and
- a club subset $C = \{\alpha_j \mid j < \kappa\}$ of κ that is disjoint from dom (f_i) for each $i < \kappa$.

Let $f_0 = s$, and pick $\alpha_0 > \sup(\mathsf{dom}(s))$.

Let $i < \kappa$, and assume that $\langle \alpha_j \mid j \leq i \rangle$ and $f_i \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ are defined.

Let $i < \kappa$, and assume that $\langle \alpha_j \mid j \leq i \rangle$ and $f_i \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ are defined.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Using that D_i is open dense, pick $h_i^0 \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ such that

- h_i^0 extends f_i ,
- $h_i^0(\alpha_j) = A_i(j)$ for j < i,
- $h_i^0(\alpha_i) = 0$, and
- $[h_i^0] \subseteq D_i.$

Let $i < \kappa$, and assume that $\langle \alpha_j \mid j \leq i \rangle$ and $f_i \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ are defined.

Using that D_i is open dense, pick $h_i^0 \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ such that

- h_i^0 extends f_i ,
- $h_i^0(\alpha_j) = A_i(j)$ for j < i,
- $h_i^0(\alpha_i) = 0$, and
- $[h_i^0] \subseteq D_i.$

Now pick $h_i^1 \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ such that

- h_i^1 extends h_i^0 on $\operatorname{\mathsf{dom}}(h_i^0) \setminus \{\alpha_i\},\$
- $h_i^1(\alpha_i) = 1$, and
- $[h_i^1] \subseteq D_i.$

Let $f_{i+1} = h_i^1 \upharpoonright (\operatorname{\mathsf{dom}}(h_i^1) \setminus \{\alpha_j \mid j \leq i\})$, and pick some $\alpha_{i+1} > \sup(\operatorname{\mathsf{dom}}(f_{i+1}))$.

Let $i < \kappa$, and assume that $\langle \alpha_j \mid j \leq i \rangle$ and $f_i \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ are defined.

Using that D_i is open dense, pick $h_i^0 \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ such that

- h_i^0 extends f_i ,
- $h_i^0(\alpha_j) = A_i(j)$ for j < i,
- $h_i^0(\alpha_i) = 0$, and
- $[h_i^0] \subseteq D_i.$

Now pick $h_i^1 \in \mathsf{Fun}_{\mathrm{bd}_{\kappa}}$ such that

- h_i^1 extends h_i^0 on dom $(h_i^0) \setminus \{\alpha_i\},\$
- $h_i^1(\alpha_i) = 1$, and
- $[h_i^1] \subseteq D_i.$

Let $f_{i+1} = h_i^1 \upharpoonright (\operatorname{\mathsf{dom}}(h_i^1) \setminus \{\alpha_j \mid j \leq i\})$, and pick some $\alpha_{i+1} > \sup(\operatorname{\mathsf{dom}}(f_{i+1}))$.

Given $x \in [f]$, let $A = \{i < \kappa \mid x(\alpha_i) = 1\}$. Let $i < \kappa$ with $A \cap i = A_i$ by \Diamond_{κ} .

By the construction of f_{i+1} , we have $x \in [h_i^0] \subseteq D_i$ or $x \in [h_i^1] \subseteq D_i$. So x is in the intersection of the D_i , as desired.

I-meager versus I-nowhere dense

A similar argument shows the following:

Lemma

Let $I = NS_{\kappa}$. Assume that κ is inaccessible or \diamondsuit_{κ} holds. Then for every $f \in Fun_I$, every κ -intersection of I-open dense sets contains an I-cone [g] with $f \subseteq g$.

Theorem

Assume that κ is inaccessible or \Diamond_{κ} holds. Then every I-meager set is I-nowhere dense.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

I-meager versus I-nowhere dense

A similar argument shows the following:

Lemma

Let $I = NS_{\kappa}$. Assume that κ is inaccessible or \Diamond_{κ} holds. Then for every $f \in Fun_I$, every κ -intersection of I-open dense sets contains an I-cone [g] with $f \subseteq g$.

Theorem

Assume that κ is inaccessible or \Diamond_{κ} holds. Then every I-meager set is I-nowhere dense.

Proof.

Suppose that A is disjoint from $U = \bigcap_{i < \kappa} U_i$, where each U_i is *I*-open dense. Now take any *I*-cone [f]. By the lemma, we can find an *I*-cone $[g] \subseteq [f]$ disjoint from U. Hence A is not dense in [f].

For $a, y \in [\kappa]^{\kappa}$, we say that a splits y if $a \cap y$ and $(\kappa \setminus a) \cap y$ are of size κ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $a, y \in [\kappa]^{\kappa}$, we say that a splits y if $a \cap y$ and $(\kappa \setminus a) \cap y$ are of size κ .

Definition

A reaping family on κ is a set $\mathcal{R} \subseteq [\kappa]^{\kappa}$ such that no $a \in [\kappa]^{\kappa}$ splits all $y \in \mathcal{R}$. $\mathfrak{r}(\kappa)$ is the smallest size of a reaping family on κ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

For $a, y \in [\kappa]^{\kappa}$, we say that a splits y if $a \cap y$ and $(\kappa \setminus a) \cap y$ are of size κ .

Definition

A reaping family on κ is a set $\mathcal{R} \subseteq [\kappa]^{\kappa}$ such that no $a \in [\kappa]^{\kappa}$ splits all $y \in \mathcal{R}$. $\mathfrak{r}(\kappa)$ is the smallest size of a reaping family on κ .

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an *I*-nowhere dense set which is not meager.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an I-nowhere dense set which is not meager.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an *I*-nowhere dense set which is not meager.

Let $\operatorname{\mathsf{Fun}}_{\operatorname{ub}_{\kappa}}$ denote the set of partial functions from κ to 2 with $|\operatorname{\mathsf{dom}}(f)| = \kappa$.

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an I-nowhere dense set which is not meager.

Let $\operatorname{\mathsf{Fun}}_{\operatorname{ub}_{\kappa}}$ denote the set of partial functions from κ to 2 with $|\operatorname{\mathsf{dom}}(f)| = \kappa$.

Definition

R is the smallest size of a family $\mathcal{F} \subseteq \mathsf{Fun}_{ub_{\kappa}}$ such that $\bigcup_{f \in \mathcal{F}} [f] = 2^{\kappa}$. (Call this a *cone covering family*.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an I-nowhere dense set which is not meager.

Let $\operatorname{\mathsf{Fun}}_{\operatorname{ub}_{\kappa}}$ denote the set of partial functions from κ to 2 with $|\operatorname{\mathsf{dom}}(f)| = \kappa$.

Definition

R is the smallest size of a family $\mathcal{F} \subseteq \mathsf{Fun}_{ub_{\kappa}}$ such that $\bigcup_{f \in \mathcal{F}} [f] = 2^{\kappa}$. (Call this a *cone covering family*.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Lemma $(|2^{<\kappa}| = \kappa)$ $R = \mathfrak{r}.$

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an *I*-nowhere dense set which is not meager.

Let $\operatorname{\mathsf{Fun}}_{\operatorname{ub}_{\kappa}}$ denote the set of partial functions from κ to 2 with $|\operatorname{\mathsf{dom}}(f)| = \kappa$.

Definition

R is the smallest size of a family $\mathcal{F} \subseteq \mathsf{Fun}_{ub_{\kappa}}$ such that $\bigcup_{f \in \mathcal{F}} [f] = 2^{\kappa}$. (Call this a *cone* covering family.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Lemma $(|2^{<\kappa}| = \kappa)$ $R = \mathfrak{r}.$

```
Lemma (\kappa inaccessible)
```

R is the smallest size of a family $\mathcal{F} \subseteq \mathsf{Fun}_{ub_{\kappa}}$ such that $\bigcup_{f \in \mathcal{F}} [f]$ is comeager.

Lemma
$$(|2^{<\kappa}| \leq \kappa^+)$$

 $R = \mathfrak{r}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Lemma
$$(|2^{<\kappa}| \leq \kappa^+)$$

 $R = \mathfrak{r}.$

Proof.

A strong reaping family at κ is a set $R \subseteq ub_{\kappa}$ such that for every $a \subseteq \kappa$, there is is $b \in R$ for which either $a \cap b = \emptyset$ or $b \mid a = \emptyset$. Let $\mathfrak{r}^*(\kappa)$ be the cardinality of a smallest strong *I*-reaping family.

Lemma
$$(|2^{<\kappa}| \leq \kappa^+)$$

 $R = \mathfrak{r}.$

Proof.

A strong reaping family at κ is a set $R \subseteq ub_{\kappa}$ such that for every $a \subseteq \kappa$, there is is $b \in R$ for which either $a \cap b = \emptyset$ or $b \mid a = \emptyset$. Let $\mathfrak{r}^*(\kappa)$ be the cardinality of a smallest strong *I*-reaping family.

If \mathcal{F} is a reaping family, then $\{x \setminus y \mid x \in \mathcal{F}, y \in [\kappa]^{<\kappa}\}$ is a strong reaping family. So $\mathfrak{r}^*(\kappa) = \mathfrak{r}(\kappa)$.

Lemma
$$(|2^{<\kappa}| \le \kappa^+)$$

 $R = \mathfrak{r}.$

Proof.

A strong reaping family at κ is a set $R \subseteq ub_{\kappa}$ such that for every $a \subseteq \kappa$, there is is $b \in R$ for which either $a \cap b = \emptyset$ or $b \mid a = \emptyset$. Let $\mathfrak{r}^*(\kappa)$ be the cardinality of a smallest strong *I*-reaping family.

If \mathcal{F} is a reaping family, then $\{x \setminus y \mid x \in \mathcal{F}, y \in [\kappa]^{<\kappa}\}$ is a strong reaping family. So $\mathfrak{r}^*(\kappa) = \mathfrak{r}(\kappa)$.

 $R(\kappa) \leq \mathfrak{r}^*(\kappa)$: Let \mathcal{F} be a strong reaping family at κ . Let c_x^A denote the function with domain A and constant value x.

Then $\{c_i^b \mid b \in \mathcal{F}, i \in 2\}$ is a cone covering family for 2^{κ} : For every $x \in 2^{\kappa}$, there is $b \in \mathcal{F}$ and $i \in 2$ such that $x^{-1}(i) \cap b = \emptyset$. So $x \in [c_{1-i}^b]$.

Lemma
$$(|2^{<\kappa}| \le \kappa^+)$$

 $R = \mathfrak{r}.$

Proof.

A strong reaping family at κ is a set $R \subseteq ub_{\kappa}$ such that for every $a \subseteq \kappa$, there is is $b \in R$ for which either $a \cap b = \emptyset$ or $b \mid a = \emptyset$. Let $\mathfrak{r}^*(\kappa)$ be the cardinality of a smallest strong *I*-reaping family.

If \mathcal{F} is a reaping family, then $\{x \setminus y \mid x \in \mathcal{F}, y \in [\kappa]^{<\kappa}\}$ is a strong reaping family. So $\mathfrak{r}^*(\kappa) = \mathfrak{r}(\kappa)$.

 $R(\kappa) \leq \mathfrak{r}^*(\kappa)$: Let \mathcal{F} be a strong reaping family at κ . Let c_x^A denote the function with domain A and constant value x.

Then $\{c_i^b \mid b \in \mathcal{F}, i \in 2\}$ is a cone covering family for 2^{κ} : For every $x \in 2^{\kappa}$, there is $b \in \mathcal{F}$ and $i \in 2$ such that $x^{-1}(i) \cap b = \emptyset$. So $x \in [c_{1-i}^b]$.

 $\mathfrak{r}^*(\kappa) \leq R(\kappa)$: Let \mathcal{C} be a cone covering family at κ . Let

 $\mathcal{F} := \{ f^{-1}(i) \mid f \in \mathcal{C}, i \in 2 \} \cap \mathrm{ub}_{\kappa}.$

For any $a \subseteq \kappa$, there is $f \in \mathcal{C}$ with $\chi_a \in [f]$. Then $f^{-1}(\{0\}) \cap a = \emptyset$ and $f^{-1}(\{1\}) \cap (\kappa \setminus a) = \emptyset$. Since $\operatorname{dom}(f) \in \operatorname{ub}_{\kappa}$, $f^{-1}(\{0\})$ or $f^{-1}(\{1\})$ is unbounded and hence in \mathcal{F} .

Remark

Assume that κ is inaccessible. If $\operatorname{non}(\mathcal{M}) < 2^{\kappa}$ or $\mathfrak{r}(\kappa) = 2^{\kappa}$, then we've seen that there's a non-meager set which is *I*-nowhere dense.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remark

Assume that κ is inaccessible. If $\operatorname{non}(\mathcal{M}) < 2^{\kappa}$ or $\mathfrak{r}(\kappa) = 2^{\kappa}$, then we've seen that there's a non-meager set which is *I*-nowhere dense.

The missing case is $\mathfrak{r}(\kappa) < \operatorname{non}(\mathcal{M}) = 2^{\kappa}$. It's open whether this configuration is consistent:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remark

Assume that κ is inaccessible. If $\operatorname{non}(\mathcal{M}) < 2^{\kappa}$ or $\mathfrak{r}(\kappa) = 2^{\kappa}$, then we've seen that there's a non-meager set which is *I*-nowhere dense.

The missing case is $\mathfrak{r}(\kappa) < \operatorname{non}(\mathcal{M}) = 2^{\kappa}$. It's open whether this configuration is consistent:

- $\mathfrak{r}(\kappa) < 2^{\kappa}$ is consistent for various κ (see Dilip's talk).
- $\mathfrak{b}(\kappa) \leq \mathfrak{r}(\kappa)$ holds for all regular κ . Moreover by Raghavan and Shelah (2018): $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$ for regular $\kappa \geq \beth_{\omega}$.
- Brendle, Brooke-Taylor, Friedman and Montoya (2016) ask whether

$$\mathfrak{b}(\kappa) < \operatorname{non}(\mathcal{M})$$

is consistent for inaccessibles. This seems to be open (and possibly harder) for successor cardinals κ with $\kappa^{<\kappa} = \kappa$ as well.

Question

What's the length of the I-Borel hierarchy?

Question

What's the length of the I-Borel hierarchy?

Question

Let $\kappa = \omega_1$ and $I = NS_{\kappa}$. Is it consistent that there is a set A with the Baire property which is I-meager, but not meager? (So \diamond has to fail.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Question

What's the length of the I-Borel hierarchy?

Question

Let $\kappa = \omega_1$ and $I = NS_{\kappa}$. Is it consistent that there is a set A with the Baire property which is I-meager, but not meager? (So \diamond has to fail.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Question

Is there always am I-nowhere dense set without the I-Baire property?

Question

What's the length of the I-Borel hierarchy?

Question

Let $\kappa = \omega_1$ and $I = NS_{\kappa}$. Is it consistent that there is a set A with the Baire property which is I-meager, but not meager? (So \diamond has to fail.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Question

Is there always am I-nowhere dense set without the I-Baire property?

Question

Is it consistent that $\mathfrak{r}(\kappa) < \operatorname{non}(\mathcal{M}) = 2^{\kappa}$?

Question

What's the length of the I-Borel hierarchy?

Question

Let $\kappa = \omega_1$ and $I = NS_{\kappa}$. Is it consistent that there is a set A with the Baire property which is I-meager, but not meager? (So \diamond has to fail.)

Question

Is there always am I-nowhere dense set without the I-Baire property?

Question

Is it consistent that $\mathfrak{r}(\kappa) < \operatorname{non}(\mathcal{M}) = 2^{\kappa}$?

Question

Is it consistent that the covering number of I-meager sets is $< 2^{\kappa}$?

Literature

[1] Holy, Koelbing, Schlicht, Wohofsky: *Ideal topologies and the nonstationary topology*, 13 pages, in preparation

[3] Raghavan, Shelah: Two results on cardinal invariants at uncountable cardinals, Proceedings of the 14th and 15th Asian Logic Vonferences (Mumbai, India and Daejon, South Korea), World Scientific, 2019, pp. 129–138

[2] Brendle, Brooke-Taylor, Friedman, Montoya: Cichoń's diagram for uncountable cardinals, Israel Journal of Mathematics, Volume 225, Issue 2, 2018, pp. 959–1010

[4] Friedman, Khomskii, Kulikov: *Regularity properties on the generalized reals*, Annals of Pure and Applied Logic, Volume 167, Issue 4, 2016 pp. 408–430

Thank you!